阅读:2688回复:11
大虾救命啊!!! usb audio device firmware设计不可或缺 G711.16位PCM 转 8位a/u-law 源程序
各位大虾 好啊
小弟有一事想请教 小弟正在开发 USB phone 用EZ-USB AN2131自己写firmware 现在碰到非常棘手的问题 想向各位大虾请教 SOF中断是1ms一次 声音的采样频率是125us一次 如果我用一个timer来控制发声和录音采样 而在SOF中断服务程序将他们传送到主机 这样做对吗 因为我在示波器上看到采样频率达不到8KHz 是不是因为在SOF中断中花太多时间 (在中断程序处理传输时我把timer 停止了) 我端点是设成 ISO 16Byte (我参考过其他设计大都这样)主机传到USB设备是16位的uniform PCM, codec 是用8位 一次ISO传输(1ms)刚好可以产生8个采样 但16位PCM 转 8位a-law格式很费时间吧 应该放在哪好呢 下面有一段源码 是不是那样做的 #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */ #define QUANT_MASK (0xf) /* Quantization field mask. */ #define NSEGS (8) /* Number of A-law segments. */ #define SEG_SHIFT (4) /* Left shift for segment number. */ #define SEG_MASK (0x70) /* Segment field mask. */ static short seg_aend[8] = {0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF}; /* copy from CCITT G.711 specifications */ unsigned char _u2a[128] = { /* u- to A-law conversions */ 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* corrected: 81, 82, 83, 84, 85, 86, 87, 88, should be: */ 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128}; unsigned char _a2u[128] = { /* A- to u-law conversions */ 1, 3, 5, 7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 49, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 69, 70, 71, 72, /* corrected: 73, 74, 75, 76, 77, 78, 79, 79, should be: */ 73, 74, 75, 76, 77, 78, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127}; static short search( short val, short *table, short size) { short i; for (i = 0; i < size; i++) { if (val <= *table++) return (i); } return (size); } /* * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law * * linear2alaw() accepts an 16-bit integer and encodes it as A-law data. * * Linear Input Code Compressed Code * ------------------------ --------------- * 0000000wxyza 000wxyz * 0000001wxyza 001wxyz * 000001wxyzab 010wxyz * 00001wxyzabc 011wxyz * 0001wxyzabcd 100wxyz * 001wxyzabcde 101wxyz * 01wxyzabcdef 110wxyz * 1wxyzabcdefg 111wxyz * * For further information see John C. Bellamy's Digital Telephony, 1982, * John Wiley & Sons, pps 98-111 and 472-476. */ unsigned char linear2alaw( short pcm_val) /* 2's complement (16-bit range) */ { short mask; short seg; unsigned char aval; pcm_val = pcm_val >> 3; if (pcm_val >= 0) { mask = 0xD5; /* sign (7th) bit = 1 */ } else { mask = 0x55; /* sign bit = 0 */ pcm_val = -pcm_val - 1; } /* Convert the scaled magnitude to segment number. */ seg = search(pcm_val, seg_aend, 8); /* Combine the sign, segment, and quantization bits. */ if (seg >= 8) /* out of range, return maximum value. */ return (unsigned char) (0x7F ^ mask); else { aval = (unsigned char) seg << SEG_SHIFT; if (seg < 2) aval |= (pcm_val >> 1) & QUANT_MASK; else aval |= (pcm_val >> seg) & QUANT_MASK; return (aval ^ mask); } } 多谢大虾赐教 在下感激不尽!!!!!! 咳现在已经过了期限了老板发怒就要饭碗不保 救命啊!!! 源码: #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */ #define QUANT_MASK (0xf) /* Quantization field mask. */ #define NSEGS (8) /* Number of A-law segments. */ #define SEG_SHIFT (4) /* Left shift for segment number. */ #define SEG_MASK (0x70) /* Segment field mask. */ static short seg_aend[8] = {0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF}; static short seg_uend[8] = {0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF}; /* copy from CCITT G.711 specifications */ unsigned char _u2a[128] = { /* u- to A-law conversions */ 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* corrected: 81, 82, 83, 84, 85, 86, 87, 88, should be: */ 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128}; unsigned char _a2u[128] = { /* A- to u-law conversions */ 1, 3, 5, 7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 49, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 69, 70, 71, 72, /* corrected: 73, 74, 75, 76, 77, 78, 79, 79, should be: */ 73, 74, 75, 76, 77, 78, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127}; static short search( short val, short *table, short size) { short i; for (i = 0; i < size; i++) { if (val <= *table++) return (i); } return (size); } /* * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law * * linear2alaw() accepts an 16-bit integer and encodes it as A-law data. * * Linear Input Code Compressed Code * ------------------------ --------------- * 0000000wxyza 000wxyz * 0000001wxyza 001wxyz * 000001wxyzab 010wxyz * 00001wxyzabc 011wxyz * 0001wxyzabcd 100wxyz * 001wxyzabcde 101wxyz * 01wxyzabcdef 110wxyz * 1wxyzabcdefg 111wxyz * * For further information see John C. Bellamy's Digital Telephony, 1982, * John Wiley & Sons, pps 98-111 and 472-476. */ unsigned char linear2alaw( short pcm_val) /* 2's complement (16-bit range) */ { short mask; short seg; unsigned char aval; pcm_val = pcm_val >> 3; if (pcm_val >= 0) { mask = 0xD5; /* sign (7th) bit = 1 */ } else { mask = 0x55; /* sign bit = 0 */ pcm_val = -pcm_val - 1; } /* Convert the scaled magnitude to segment number. */ seg = search(pcm_val, seg_aend, 8); /* Combine the sign, segment, and quantization bits. */ if (seg >= 8) /* out of range, return maximum value. */ return (unsigned char) (0x7F ^ mask); else { aval = (unsigned char) seg << SEG_SHIFT; if (seg < 2) aval |= (pcm_val >> 1) & QUANT_MASK; else aval |= (pcm_val >> seg) & QUANT_MASK; return (aval ^ mask); } } /* * alaw2linear() - Convert an A-law value to 16-bit linear PCM * */ short alaw2linear( unsigned char a_val) { short t; short seg; a_val ^= 0x55; t = (a_val & QUANT_MASK) << 4; seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT; switch (seg) { case 0: t += 8; break; case 1: t += 0x108; break; default: t += 0x108; t <<= seg - 1; } return ((a_val & SIGN_BIT) ? t : -t); } #define BIAS (0x84) /* Bias for linear code. */ #define CLIP 8159 /* * linear2ulaw() - Convert a linear PCM value to u-law * * In order to simplify the encoding process, the original linear magnitude * is biased by adding 33 which shifts the encoding range from (0 - 8158) to * (33 - 8191). The result can be seen in the following encoding table: * * Biased Linear Input Code Compressed Code * ------------------------ --------------- * 00000001wxyza 000wxyz * 0000001wxyzab 001wxyz * 000001wxyzabc 010wxyz * 00001wxyzabcd 011wxyz * 0001wxyzabcde 100wxyz * 001wxyzabcdef 101wxyz * 01wxyzabcdefg 110wxyz * 1wxyzabcdefgh 111wxyz * * Each biased linear code has a leading 1 which identifies the segment * number. The value of the segment number is equal to 7 minus the number * of leading 0's. The quantization interval is directly available as the * four bits wxyz. * The trailing bits (a - h) are ignored. * * Ordinarily the complement of the resulting code word is used for * transmission, and so the code word is complemented before it is returned. * * For further information see John C. Bellamy's Digital Telephony, 1982, * John Wiley & Sons, pps 98-111 and 472-476. */ unsigned char linear2ulaw( short pcm_val) /* 2's complement (16-bit range) */ { short mask; short seg; unsigned char uval; /* Get the sign and the magnitude of the value. */ pcm_val = pcm_val >> 2; if (pcm_val < 0) { pcm_val = -pcm_val; mask = 0x7F; } else { mask = 0xFF; } if ( pcm_val > CLIP ) pcm_val = CLIP; /* clip the magnitude */ pcm_val += (BIAS >> 2); /* Convert the scaled magnitude to segment number. */ seg = search(pcm_val, seg_uend, 8); /* * Combine the sign, segment, quantization bits; * and complement the code word. */ if (seg >= 8) /* out of range, return maximum value. */ return (unsigned char) (0x7F ^ mask); else { uval = (unsigned char) (seg << 4) | ((pcm_val >> (seg + 1)) & 0xF); return (uval ^ mask); } } /* * ulaw2linear() - Convert a u-law value to 16-bit linear PCM * * First, a biased linear code is derived from the code word. An unbiased * output can then be obtained by subtracting 33 from the biased code. * * Note that this function expects to be passed the complement of the * original code word. This is in keeping with ISDN conventions. */ short ulaw2linear( unsigned char u_val) { short t; /* Complement to obtain normal u-law value. */ u_val = ~u_val; /* * Extract and bias the quantization bits. Then * shift up by the segment number and subtract out the bias. */ t = ((u_val & QUANT_MASK) << 3) + BIAS; t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT; return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS)); } /* A-law to u-law conversion */ unsigned char alaw2ulaw( unsigned char aval) { aval &= 0xff; return (unsigned char) ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) : (0x7F ^ _a2u[aval ^ 0x55])); } /* u-law to A-law conversion */ unsigned char ulaw2alaw( unsigned char uval) { uval &= 0xff; return (unsigned char) ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) : (unsigned char) (0x55 ^ (_u2a[0x7F ^ uval] - 1))); } |
|
沙发#
发布于:2004-04-07 17:33
给为大虾
有没有人知道怎样将 16位线性PCM 转成 线性8位PCM 格式啊 拜托 |
|
板凳#
发布于:2004-04-09 16:34
怎么美人给我建议啊 郁闷啊
各位大虾给电子把 |
|
地板#
发布于:2004-04-13 03:00
嘿,现在在线?我也开发usb audio 设备。我想我们可以交流一下。
我的msn:pz771230@msn.com |
|
地下室#
发布于:2004-04-13 11:11
你的说法是对的,当然格式转换比较费时间,无论如何你现在的思路是对的。
我已经成功开发了这个项目,我网站上有一些介绍,和一些数据转换方法,希望对你有帮助。 www.eyeteck.com 谢谢! |
|
5楼#
发布于:2004-04-13 12:10
多谢 keimet 大虾
我的firmware可以出声音了但很多噪音 因为只能出7个采样每1ms,在SOF中断程序的开头我把timer启动(R0=1)中断间隔是125us 但我不知道为什么timer中断 总在SOF中断处理完才开始。 我用示波器看过SOF共花了 194us 来执行, 第一个timer 中断是在 194us 之后才发生的 但我把 timer 设成 125us 中断一次的啊 照理说timer的优先级高过 USBINT, timer 可以中断 SOF 的阿 头疼 郁闷啊 !! |
|
6楼#
发布于:2004-04-14 14:14
我没有很仔细去看MCU的中断结构。好像MCU的中断结构是进了中断就不能再进第2级中断了。--只是我的印象,我没去考证。
所以,如果是这样的话,你一个中断已经进去了,另一个再来的话,它也无法相应啊。 为什么你1ms只能做7次啊,做8次是没有问题的啊。 杂音是因为你的波形不稳定造成的。 |
|
7楼#
发布于:2004-04-15 09:31
kermit 大虾
中断的问题终于解决了原来是要设定优先级才可以的 你所说的波形不稳定是不是指输入的波形啊 我在SOF中断里处理 16->8, 8->16 的转换很费时间啊(因为我同时做声音的输入和输出) 是不是用查表的方法快点? 缓冲区是不是也用乒乓形式啊 因为要在每8个timer中断后输入声音才采样完毕 要等到下一个SOF才能传输出去 而下一个SOF同时也要用8个时间中断继续采样声音 所以要用乒乓形式的缓冲区 不知道我这样想对不对呢 多谢指教了 |
|
8楼#
发布于:2004-04-15 11:56
现在可以出声音了8个采样每1ms 但很大的稳定的噪音 音乐的声音很小噪声很大 不知为什么 为什么????
|
|
9楼#
发布于:2004-04-15 16:45
实在不行,就先把老板炒掉,不要着急,凡事都有解决的办法.呵呵
|
|
10楼#
发布于:2004-04-15 19:00
我发觉可能是 an2131传送数据是一字节一字节的传 就是把16位的PCM 拆开成2字节 我在firmware里需要把他们再合并 可能就是这里出错了 由谁能告诉我要怎么 合并才正确
while (byteCount-=2) { seg = OUT8DATA; pcm_val = OUT8DATA; pcm_val >>=3; if (pcm_val >= 0) { mask = 0xD5; } else { mask = 0x55; pcm_val = -pcm_val - 1; }...... 这样做(其实把第一字节给丢了)可以出声音 但很多噪音 但试过其他组合方法 却连声音也没有 惨啊 |
|
11楼#
发布于:2004-10-08 21:55
这位老兄,你最后调通了么?
|
|